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Ab s t ract

In the previous paper, we presented a general expression for the

Taylor series for any function which can be expressed as a simple

product of a purely radial and purely angular part. In this paper

we apply that form of the Taylor series to the Yukawa potential

[y(r) = e-ar/r], and to several potential functions which can be

derived from it. In particular, we examine the expansion of the

Yukawa potential itself. In the limit as the exponent a vanishes,

tile Yukawa potential transforms into the Coulomb potential. We show

that the limiting process applied to the Taylor series for the Yukawa

potential yields the familiar form of the Laplace expansion of the

Coulomb potential. Differentiation of the Yukawa potential with

respect to the exponent a yields the exponential function. Hence,

we develop a Taylor-Laplace power series representation of the Morse

potential. Integration of the Yukawa potential with respect to tile

exponent, in tile sense of the Laplace transform, yields functions of

the form r - I. Thus, Taylor series for the Lennard-Jones and related

potentials can he constructed. Finally, we consider a Laplace-like

functional expansion of the Yukawa potential followed by a Taylor

series development about the end-point of a vector in the expansion.

This process illustrates the application of the general methods to

-a more complicated angular dependence than one finds with the use of

simple scalar functions. An appendix contains a Taylor series for

one additional potential which is not directly related to the

Ynkawa potential: the Woods-Saxon potential. The expansion for the

Ruck ingham exp-0 potential (totally derivable from the Yukawa potential)

is also iven.
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1. Introduction

Given a general function G(r) of the vectorial separation

between two points, r = r, - r2 , we can consider the expansion of this

function in two ways. In one form of expansion, we can express the

original function as a series of products of new functions. The

arguments of the individual functions depend only upon components of

ri or r2 alone. Thus, the dependence on r, and r2 in the original

function is separated. The other form of expansion is to consider

the development of the function as a power series in terms of the

displacement(s) about the vectorial end-point(s). The Taylor series

represents such a development.

In this paper we develop Taylor series for several commonly used

potential energy functions. The functions all can he derived from the

Yukawa potential function:

y(r) = exp(-ar)/r. (1.1)

The particular functions we consider in addition to the Yukawa

potential are the Coulomb potential (we show this as a limiting form),

the exponential and Morse potentials, and the Lennard-Jones potential.

Included is the Buckingham exp-6 potential which is merely a hybrid

form of terms which we consider. Our analysis shows that for parent

functions which can be expressed as inverse powers, the Taylor series

is equivalent to the Laplace expansion of the same function.

An objective in seeking functional or power series expansions

of various potential functions is to be able to simplify the potential

energy functions for complicated distributions of molecular sources.
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Thus, given a spatial distribution of sources for a particular

potential, e.g., electrostatic, exponential, Morse, or Lennard-

Jones, it is frequently necessary to consider some form of symmetry-

adapted expansion. Briels (1980) has considered this type of problem

for functional expansions of the Buckingham (1938) exp-6 potential. In

a number of instances, it is necessary to consider symmetry-adapted

Taylor series as well. Schmidt, Pons and McKinley (1980) considered

such an expansion in an analysis of the vibrations of ions and atoms

in condensed phases. The formulae we consider here simplify the

problem of constructing Taylor series.

In the next section we list the formulae needed for the subsequent

discussion. In section 3 we consider the Taylor series for the Yukawa

potential. In section 4 we consider the limiting transitions to

the Coulomb, exponential, and Lennard-Jones potentials. Finally,

in section 5 we consider the Laplace functional expansion of the

Yukawa potential and the development of a Taylor series for one of

the functional elements. The Woods-Saxon (1954) and Buckingham (1938)

exp-6 potentials are considered briefly in an appendix.

2. The General Taylor Series

In the preceeding paper (McKinley and Schmidt, 198_) we showed

that for any function G(r) which is separable into purely radial and

angular parts of the form

G (r) Y (r) 1 (r) (2.])

where YAi(r) is the spherical harmonic function, the Taylor series
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in terms of the vectorial displacement c is

3/2 nG,(r+c) = (47T)/2y (c"/n ) A (-~ nn Y M(r)Y (C)

n=0 lZ, ,m

S L+/2×C(2 .+T)(2 +1) (L2.00 I XO) (L19,Mm I xAj) In1 (r). (2.2)

In this formula (ILmIli) is tile Clebsch-Gordan coefficient (Rose,

1957). An 9" is given by (Morse and Feshback, 1953)

(0 for Q > n and n - odd

A (2 . 3)
n 9

(2 P+I )n (n- P +)I for q. < n and Z - n even
(n-Z +1) (n+.+l) r

and I (r) is defined by

1I(r) _ 1 dk kn+2f(k)j.j(kr) (2.4)
(2 ) o

where in (x) is the spherical fessel function oF the first kind

(Arfken, 1970). The quantity f(k) is

f(k) = 4ni ) f dr r 2 (r)j,(kr). (2.5)
0

Equation (2.2) and the supporting equations (2.3)-(2.5) are used in

the following sections.

We shall have need to use the limitinp form of eqn (2.2) for

a scalar funct ion 0: = 0. This quantity was derived in the

preceeding paner (cIcKinlev and Schmidt, 198 )
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t ' ci1/nG-i) c+nA 1) 2 rc) I
n=O zf

P (x) is the Legendre Polynomial

3. Functional and Power Series for the Yukawa Potential

We now express the Yukawa potential, eqn (1.1), as

y(r) = 'Q-YOOr)-exp(-ar). (3.1)

The Fourier transform is

f(k) = (4n) 3/2fdr r exp(-ar)jo(kr)
0

= (47T 3/2k - If'dr exp(-ar)sin(kr)

0

= ,l (4 ) 3/2) 12)

k2 + a 2

The radial factor, I]nli(r), in the general term of the Taylor series

is

: I n' +2  I
n 2(r) =-2 dk k j(kr) (3

71 0 k +

The integral can be evaluated in the upper half of tile complex plane.

The entire integrand is even (because n - 2 is even). Thus tile

range is doubled to include tile entire real axis of k. We now

iltroduce the spherical Ilankel functions witih the use of



.(kkr) = Re h1l)(kr) ( .1

as is customary, Re stands for the 'real part of']. The factor k + 2

in (3.3) removes the pole of order Z+l in h(l)(kr) at k=0. Thus, the

only poles in the i ntegrand are located at the points k= ia . As

a result, the integration yields modified spherical Bessel functions

of the third kind (Arfken, 1970) which are defined by

k 0r ) = iZ+2 h~l) (iar) . 5

Altogether, we find

(.r) = (4cr)- 1a in-g k (ar)

'he YukaWa potential at the displaced point now can he written as

n~
y(r+c) n na P c)k (ar). (3.6)

It is useful to compare this form of the expansion Ivi th a L-ap ace-

type functional expansion of the same potential IIn section 5

we cons ider the Tay lor expans ion of part of the following funct iona 1

form. I Given the Yukawa potential y(r) , eqn (3.1), we can consider

the following relationship:

rI-r2 - -t---Ifd k _4! _exp[_ik.(r 1r 2) ]  (3.-
(2-nJ) k 2 +a
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As i s shown in section 5, with the use of two Ravleigh expansions

for the exponent ial functions in eqn (3.7), the functional expansion

is

y(r1-r 2  4T , ai (ar<)k(ar)Y ( ((38)

in which i (x) is the modified spherical Ressel function of then
first kind. The quantities r>(<) represent the !,reater (lesser) of

r, and r2 . fn this exnression, apart from powers of r implicitly

contained in the representations of the transcendental functions

k and i .as infinite power series, there is no explicit dependence

on the powers of ri or r2 . The functional expansion is therefore

distinctlv di fferent from the Taylor series. The angular dependence,

expressed through the Legendre polynomials, is the only similarity

bet\,een the two expressions.

4. Potentials ierived from the Yukawa Potential and its Taylor Series

In the Yukawa potential v(r), in the I mit as a tends to zero

we recover the Coulomb potential:

-arlim er - 1/r. (.1I)

Differentiation of tile Yukawa potential with respect to the exponential

coefficient a yields the simple exponential function:

(1 e -a  -,ar
a T(r

d 0!
. . . .. . . . ... _r,



And, final ly, when the Yukawa potential is part of the following

in t eg rra I

TF 1 77 da a q-2 c- 
(4.

o r

we recover functions of the form r-1

In this section we consider these three hasic limiting cases

and the Taylor series which can be derived from the indicated limitino

processes.

The Coulomb potential is an appropriate limit of the Yukawa

potential, as indicated above. When this limit is applied to the

series representation (3.6), we obtain the following:

I lim v(r+c)

~ ~ a-K) ~

(-c) n lim{an+l (r (4.4)

n T--T n ZItaK 1%(ar0I)PZ(crn1 , 2, - a40

From the definition of the modified spherical Bessel function

(Arfken, 1970),

Tim k (ar) = lim 2 '+1 = ia 2 '" (4.5
a-*( a-K0 2, (! ar) a- 0 (ar) + 1

so that

1ian+lk 1 (
lim[a k9 (ar)] = 

n  (29,-1) ! ! "  4.6
a-0 9) n,9 r 9,n e

From eqn (2.3) which definies the coefficients; A~ n9 We find
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Ppon the substitution of eqn (4.6) and (4.7) into (3.6), we obtain

I = (-c) "

r-c~ ~(r-c) (4.8)

which is ident ical to the Laplace expansion of the Coulomb Iotential.

1%e note that if a similar analysis is carried out with the use

of eqn (4.22) of the proceeding paper (McKinlev and Schmidt, 198 ),

we recover the Carlson-Rushbrooke (1950) expansion in the limit as

the quantity a vanishes.

The simple exponential function exp(-ar) has been in use for

a considerable time as a representation of the repulsive interactions

which operate between atoms, ions, and molecules (Porn and Mayer. 1952.

Combinations of the exponential reul lsion and inverse powers of

aittraction are commonly used in the analysis of intermolecular

interactions (liirschfelder, et al., 1954, Miargenau and Kestner,

1909). A combination of exponential functions defines the Mlorse

1929) potential:

M(r) = 1 e a(ro-r) [ea(ro-r) 2] (4.9)

in which ) is an energy of dissociation, and r0 is an equilibrium

separation. Briels (1980) has considered the functional expansion of

the exponential component of the Buckingham exp-6 potential in order

to develop symmetry-adapted series.

The Taylor series for the exponential function is
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d exp -a(r+c)]exp l-,a,(r-c ) 1 -,t lr+cl

-y(-C) n~P~(~c. +
Ac ^ d ,[a k (ar) (4.1

With the use of the mixed recurrence relation (Abramowitz and Stegun,

9o5)

:k{,(:} = ZkR ( ) (+l)kQ(z) (4.11

in eqn (4.9), we get

exl-a(r+c)1 = -irk (a) 1- (n- ^ ^  (a I

(4. 12

The \Morse potential exnands as

y(-ac)n . (rI n{2earo ra)
Nl(r+c) = n (c A n Q2ar k, 1 (2ar)

n,,

(4.13)5

(n- )k 9 (2ar}] - 2 earorar kv_(ar) - (n-Z)k (ar)]1.

Final ly, we consider the Taylor series for r+cl Suhst i tut in

the Taylor series for the Yukawa notential (3.6) into (4.3), we

obta in

l 1 q-2 y (C)n AP+(r.cala k r

r+c q 2- T f d a Rp (rn,.

-. - 0 • ( n , d ar.

{ A nv Q - n 1 - (r.c)j da ,,l + n - l k , ( a r ) (4 .14
n" "0



Where we have exchanged the order of summation and integration. We

now can use the mixed exponential-polynomial form of the modi fied

spherical Bessel function (Abramowitz and Stegun, 1905)

(X) -X Q x (4.15
s- -.5 =0...

to write

da a(1+nl 1 k (ar) 1 ( "+s) 1 da aq+ns-2ar 4.16~~r (2s)' ( - )' r j
o s=O "" "

(4.10)

The integral is uncomplicated and straightforward to evaluate as

long as q-2 . (Note, from eqn (4.14) the expansion vanishes for

(q-2)<0 because the factorial becomes infinite.] Thus, the expansion

is

1^_1~ ^ (9+s)!(2+n-s-2)n

An ,P(r'c) n(-s)! (2s)- (- 2 )T-c/r) (4.17)lr+c q  rq  n , , s nP! "lZ s - ( s !

It is interesting to note that this form is equivalent to the result

obtained by Briels (1980) who used a functional expansion.

5. Laplace and Laplace-Taylor expansions of the Yukawa potential

The main problem we consider in this section concerns the

evaluation of the Taylor series expansion of the function y(r1 -r2 )

about the point rl. Such an expansion is required, for example,

when one needs to consider a source at r2 and the displacement

or a particle about the point ri; both points r, and r2 share a

common origin.
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Before we consider the displacement about r, by c in detail

we first demonstrate eqn (3.8), the Laplace functional expansion

or the Yukawa poteit a I.

The Fourier transform is given by ecIn (3.2) together with Y0 0 (k)

Ft.1(r)J - ,|LLq (5.1)

k
2 +a

2

where here (I is the strength of the source. The functional form of

y(ri -c ) is

y(r1 -r2) 3d k 4-n exp(-ik-(r1 -r 2)1. (5.2)
( 2 ,n) k,I+'2

The use of two Rayleigh expansions

X (ikr) = 4  i Y (r)Y (k)jx(kr )  (S.)

in eqn (5.2) yields

)y(ri-r2) = 8q YA (ri)Y, (r2)f dk - i (krl)jA(kr2) (5.4)
0 k 2 +a

upon integrating over the angles.

The radial integral is

l(r 1 ,r 2 ) = dk j,(krl)j,(kr,). (5.5)
0 k2+a 2

The evaluation of this integral proceeds along lines similar to the

evaluation of eqn (3.3). We write
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Ik:
R dk -)j (kr<) 5.a

f -- X, k' 2 > A <

in which r, is the greater of r, r2, . The (\+l)-order pole in 1 ( l

at k=O is removed by the (X+2)-order zero in k 2j (kr 1lcnc,

closing the contour above, the only pole is at k=+ia. The integrial

I is

~aix(ar )k (ar>). (5.7

Thus, the Laplace expansion of the Yukawa potential is that given hr

eqn (3.8):

y(r1 -r2) 
= 4nq Y XP(r1)Y P(r2)ai(ar<)k(ar>). (3.8

We now consider the expansion about the point rj:

y(r+c-l 2) = q l!(c. V)ny i(1_r2
n=O

Sk (r 2 )(CV0 [Y (rI)ai (ar<)k,(ar>)I.

nXp"

In order to evaluaW this expansion, we need to consider the 'partial

potential'

,(rj) = Y (rl)aiX(ar <)k(ar>)

_ 1 f d'k f (k)Y (k) exp (- ik~r - r5 9

(2r,)' A A
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fX(k) = 4fi drI rr I kr
0

I ar r 1I ; 1 l 2  1  5. 10)

+ f drir} ai (ar2)k,(arl) j \(krl]

Wc show in) appendix 2 that

t k - 2 2 4 j (kr2). (5.11)

k2

I t he st a ida rtd manner, we now find

'n 3/2 c n n+i
(, -. "AV)- -Y~ lr -)) (4r )

ZmLM

+ 1/2 (lZ0 0 1 A 0) (L lMmnXl)InL, (r (5. 12)

whee SC pecifically,

, = lJdk kn+2 4ij I

2 fdk - - j X (k 2  j (kr2) i(kr )21?J dk 2+ 2 jAkr2)j (krI). (5.13)
2 f0 k 

+ ,,1

Vrom the parity of the Clcbsch-Gordan coefficient, k+L+k=Qven. From

A n' n-Z= even. Thus, l,++X=cven. The integrand is even and can be

doubled. Write
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nLX(r4) 2 fdk k n+ j,(kr 2 )j1 (krl). (5.14)

We consider two cases separately.

Case A: rl<r 2. Let j,(kr2) = Re hl)(kr 2) and close the contour

above. As k-0, the entire integrand behaves as kn - +L+l. The

The triangle inequality for the Clebsch-Gordan coefficient ensures

that Z+L-A>O. We know that n-t>O. Thus, n+L-X>O, and there is no

pole at k=O. The pole at k=ia contributes through its residue to

the integral:

.n+ 1
In (rj) - a k (ar2)i (arl) (5.15)

4T

and

y(r+c-r2)rr ( 3/2 (cn/n!)A (2 (r

rI< r 2  nq nX pmLM n 9 r 2)Ym(c) YLM(r1)

( -+( I2L+I 11 /2
2 (LOOIXO)(kLmMIXp)an+ kX(ar2)i (arl). (5.16)

In the limit as rl -O in eqn (5.16), we recover eqn (3.6).

Case B: rl>r 2. Proceed in a manner which is similar to case A.

Let jl(kri) = Re hL)(krj). Again, we can show that n+A-L>O so that

there is no pole at k=0. The residue at k=ia now yields

LOLA~l) =1 .n+2X-i an+l.(17
I 1 iA(ar2)kA(arl)

and
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/*

)'(rl+c-r 2 ) = 4)"q n (cn/n!)A nY (r2)Y (c C r )

S 2L+l 1I/2nl
[(2A+1)l2 +) J1(L O0I0)(Li MmIXp)an+ i (ar2)kL(arl). (5.18)

As an example, we now apply these results to the problem of a

ring of source, such as a charged ring or a ring of source for the

Morse potential.

The distribution of source is such that an element of source dq

is in the vicinity of r2 . Thus, we write

y(r) = jdy(rl-r 2)

= 4Tr dq I YX11(r)Yxl(r2) aiA(ar<)k,(ar>). (5.19)

For the case of a ring, the magnitude of r2 is constant. Hence,

dq -q- d 2  (5.20)2IT

and

fdq YAP(r2) = 2Jd 2 4 A+ 7"p)!- PA(cos0 2 )e

= q YXo(r2)6O. (5.21)

We find for y(rj)

y(ri) = (la~jA(ar,)kA(ar>)(2A+1) tA(cos O1) 'A(cos 0 2) (5.22)
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We now use the results obtained above to investigate dis-

placements by c about ri. For rl<r 2 we have

3/2q ^ ^^
~ ~T I=C lr (4Ti) q (cn/n Aj X AnY (r 2 ) YLM (r 1) Ym(c)(ri +c) r =<r n4i')1 2  gml A

×(2X1 (2 1)12 (LZOOIAO)(LVZmrnIo)an~l iL(arl)kX(ar2) (5.23)

and for r1 >r2

v(rl+c) = (47) (I (-c) n (r2) )Y )

nA kmLN1 n!

( 2L+l }1/2 +
X-( 2 A1 )( 2 zl) J (LZOOJXO)(LZMmIXO)an+l i(ar2)ki(arl). (5.24)

In the limit as a tends to zero in these expressions, we

recover the forms associated with the Coulomb potential:

lina y(ri) = qy(2A+l)P (cosO1)P,(cos8 2 )lim aiA(ar<)k,(ar > )

a-0 A a-2O

= qY P(cosO1)P,(cos02) (5. )

from eqn (5.22). This expression usually is obtained as an example

in classical electrostatics by other means (cf., Jackson, 1962, p.04).

The Coulomb limit for the expansions (5.23) and (5.24) yields

lim y(rl+c-r 2) (4T) q Y T! o(r2)Yl (r)Y (c)
a ~ r <r2 l'm ", m 9) m



-18-

2L+l 1/2 (2L+2Z-1)
× (2k+1)(2L+2k+1)J (LOL 9O) (L2-mmIL+QO) (2L+)!!

L
X L+F+1 (5.26)
r2

and

lrn y(r1+c-r2) = (4r)3/2 (-c)~ - ri£r-r9)Lm r ( L, (r2)YL, -m r1)

2L+l 11/2×Y m (c) (2t+1)(2R-2L+1) (I0OOIk-LO)(L-mm[Z-LO)

Z-L
(2L-l)!! r2  (S.27)(2t-2L+1)TT L+ ( . 7

r,

Although we have examined the case of the ring as an example,

it is far from an idle one. There are numbers of systems of interest

in physics, chemistry, and biology in which essentially one atom or

ion sits in close proximity to a configuration of atoms which are

bound together as pentagons, hexagons, and higher regular polygons.

Some examples are the single crystal surfaces of pure, clean metals

and other solids, annular, charged ring molecules in chemistry,

and surface aggregates of phosphate ions in biological membranes.

It is easy to show by computer simulation (Schmidt, unpublished)

that the difference between the hexagon and a continuous ring

is a small one. Thus, the ring of charge or matter as the source

density for the Morse potential, for example, serves a useful function.

The analyses of vibrations and stabilities in such systems are

facilitated by the analyses given above.
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Appendix I. The Woods-Saxon and Buckingham exp-6 potentials

We have mentioned the Buckingham (1938) potential in the text

of this paper. In this appendix we show a general expression for the

Taylor series expansion of this potential. The result compliments

Briels (1980) functional expansion. First, however, we consider

a different kind of potential energy function, one which depends

upon the exponential function, but is not directly related to the

Yukawa potential. The function is the Woods-Saxon (1954) potential

which has been used frequently in the analyses of nuclear models.

The Woods-Saxon potential has a simple form:

_-VO 1 l
'Ws 1+ exp[(r-rO)/p].

This function does not easily admit a Fourier transform. Therefore,

the direct application of the integral form of the Taylor series

is inappropriate. We resort to a differential form (McKinley and

Schmidt, 198_) in order to get useful results.

In particular, in the previous paper we showed that for a

scalar function of the form

G(r) = Yoo(r)jv TF(r)j

= F(r) ( .2)

an arbitrary term in the Taylor series is

I ( n c n
_(-) + -q

.(r) = r O -q) ! (2q) r
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+ dr ( d / d r ) n - q - 1F ( r ) .  (1.3)

For the case of the Woods-Saxon potential, it is reasonably

easy to obtain a closed, polynomial representation for the differentia-

tions indicated in eqn (1.3).

The differentiation of the Woods-Saxon potential (I.1) to

arbitrary order is carried out as follows. Let

x = exp[(r-ro)/p]. (1.4)

Then

(d/dr) n = p-n x (1.5)

and by means of mathematical induction we find

x -i = CnxS (d/dx)s  (1.6)

where the coefficients Cn are determined by means of the following
s

initial and end conditions

C n C n  =n (1.7)

Cn= 0 for all s > n
S

and the recursion relation

Cn = sC n-I + Cn - I 8)
s s-l"
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The differentiation of the Woods-Saxon potential now leads to the

general term for the Taylor expansion

1 V n ^ ^X -1)'I(Z+q)!
n (c.V)% S _ c P (r.c) Y ( -) ( q )q!n -n z n z q=0 (Z-q)!(2q).C! ( /

x{(n-q)(/r)I Cn-q -' e(s) + n (s) 1 (1.9)

s s s=l C

in which e(s) is

c(s) = (-l) s  exp[s(r-ro)/p] (1.10)
{l+exp[ (r-ro)/p] s

The Buckingham potential is simply a combination of the exponential

and van der Waals r- 6 potentials:

B(r) = ae -br - c/r 6. (I.11)

The Taylor expansion of this function is just the combinations of

eqn (4.12) and (4.17). We find specifically

- - = n) AnP,(r'r') ab [brk(.l(br)-(n-c)k£ (b r ) 1

2 r(s+s) ! (n+4-s-rn+6 s=0 (Z-s)!(2s)!!"(.2
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Appendix II. The evaluation of the integral (5.10)

We evaluate the Fourier radial transform, eqn (5.10),

as follows.

Write the spherical Bessel equation as

d 2 d 2jr rjX(kr)] + (kr) 2j (kr)- X(X+l)j,(kr) = 0. (1I.1)

We write the modified spherical Bessel equation for any of its solutions

as

d 2 d
dr[r U-rjX(ar)] - (ar)k,(ctr) - X(X+l)c<(ar) =. (.2)

Multiply the first equation by -l,(ar) and the second by j,(kr) and

add:

d 2 d2d
- x(ar)ar[r -rJx(kr)] + jX(kr)[r rcx(ar)] -c,(ar)(kr),,(kr)

- j,(kr)(ar) 2' (ar) = 0 (11.3)

The first two terms are integrated by parts. The third and fourth

terms are transposed. The result is

2 1 26 d r r 2  d. k )

r 2 C(ar)j,(kr) = kI2 + 2 
U4j,(kr)rTr,(ar) - r CA(ar) jx (kr).

(11.4)

When this result is substituted into eqn (5.10), we find
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2~k dri 2 dr2fk)- k 2 c 2 akX(ar2) [j (krj)r j-i,(ri) - r~iX(orj) X(kri Ik2+OL 0

4 Tr 2 22

k2 + 2 r 2 (kr2)[k,(r2)i (or2) - i(ar2)kA (ar 2)] (11.5)

The quantity in the brackets is a simple Wronskian which has the value

1/(a 2r2) (Arfken, 1970). Thus,

fX( ) = k2+(12 j , (kr2) . (5.11)
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